Exploring the Potential of Nucleic Acid Bases in Organic Light Emitting Diodes.
نویسندگان
چکیده
Naturally occurring biomolecules have increasingly found applications in organic electronics as a low cost, performance-enhancing, environmentally safe alternative. Previous devices, which incorporated DNA in organic light emitting diodes (OLEDs), resulted in significant improvements in performance. In this work, nucleobases (NBs), constituents of DNA and RNA polymers, are investigated for integration into OLEDs. NB small molecules form excellent thin films by low-temperature evaporation, enabling seamless integration into vacuum deposited OLED fabrication. Thin film properties of adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U) are investigated. Next, their incorporation as electron-blocking (EBL) and hole-blocking layers (HBL) in phosphorescent OLEDs is explored. NBs affect OLED performance through charge transport control, following their electron affinity trend: G < A < C < T < U. G and A have lower electron affinity (1.8-2.2 eV), blocking electrons but allowing hole transport. C, T, and U have higher electron affinities (2.6-3.0 eV), transporting electrons and blocking hole transport. A-EBL-based OLEDs achieve current and external quantum efficiencies of 52 cd A(-1) and 14.3%, a ca. 50% performance increase over the baseline device with conventional EBL. The combination of enhanced performance, wide diversity of material properties, simplicity of use, and reduced cost indicate the promise of nucleobases for future OLED development.
منابع مشابه
Thin-film Encapsulation of Organic Light-Emitting Diodes Using Single and Multilayer Structures of MgF2, YF3 and ZnS
In this research, the lifetime of green organic light emitting diodes (OLEDs) is studied using four passivation layers. To encapsulate the OLEDs, MgF2, YF3, composed of alternating MgF2/ZnS and YF3/ZnS layers were grown by thermal vacuum deposition. Measurements show that the device lifetime is significantly improved by using YF3 and ZnS as passivation layers. However, diodes encapsulated by Mg...
متن کاملDNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes
We report on the use of nucleic acid bases (NBs) in organic light emitting diodes (OLEDs). NBs are small molecules that are the basic building blocks of the larger DNA polymer. NBs readily thermally evaporate and integrate well into the vacuum deposited OLED fabrication. Adenine (A) and thymine (T) were deposited as electron-blocking/hole-transport layers (EBL/HTL) that resulted in increases in...
متن کاملOrganic LEDs: DNA benefits
The nucleic acid bases that form DNA can serve as a useful hole-transport (electron blocking) layer in organic light emitting diodes (OLEDs), according to scientists in the USA. Eliot Gomez and co-workers report that because adenine and thymine can be thermally evaporated, they can be easily incorporated into the fabrication of OLEDs made by vacuum deposition and offer efficient hole-transport ...
متن کاملEquivalent circuit model for organic single-layer diodes
Related Articles Influence of phosphorescent dopants in organic light-emitting diodes with an organic homojunction Appl. Phys. Lett. 101, 243303 (2012) Influence of phosphorescent dopants in organic light-emitting diodes with an organic homojunction APL: Org. Electron. Photonics 5, 268 (2012) A study of temperature-related non-linearity at the metal-silicon interface J. Appl. Phys. 112, 114513 ...
متن کاملEffects of LED Light on Seed Emergence and Seedling Quality of Four Bedding Flowers
Recently much attention has been paid by horticulturists to light-emitting diodes as a new source of economical and spectral-selective light. The reason is mainly coming from their versatility in handling and mounting, long working time, wattage use efficiency and lower heat production. In this study we examined their potential in promoting seed germination and producing quality flower seedling...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Advanced materials
دوره 27 46 شماره
صفحات -
تاریخ انتشار 2015